6 research outputs found

    Detection of Driver Drowsiness and Distraction Using Computer Vision and Machine Learning Approaches

    Get PDF
    Drowsiness and distracted driving are leading factor in most car crashes and near-crashes. This research study explores and investigates the applications of both conventional computer vision and deep learning approaches for the detection of drowsiness and distraction in drivers. In the first part of this MPhil research study conventional computer vision approaches was studied to develop a robust drowsiness and distraction system based on yawning detection, head pose detection and eye blinking detection. These algorithms were implemented by using existing human crafted features. Experiments were performed for the detection and classification with small image datasets to evaluate and measure the performance of system. It was observed that the use of human crafted features together with a robust classifier such as SVM gives better performance in comparison to previous approaches. Though, the results were satisfactorily, there are many drawbacks and challenges associated with conventional computer vision approaches, such as definition and extraction of human crafted features, thus making these conventional algorithms to be subjective in nature and less adaptive in practice. In contrast, deep learning approaches automates the feature selection process and can be trained to learn the most discriminative features without any input from human. In the second half of this research study, the use of deep learning approaches for the detection of distracted driving was investigated. It was observed that one of the advantages of the applied methodology and technique for distraction detection includes and illustrates the contribution of CNN enhancement to a better pattern recognition accuracy and its ability to learn features from various regions of a human body simultaneously. The comparison of the performance of four convolutional deep net architectures (AlexNet, ResNet, MobileNet and NASNet) was carried out, investigated triplet training and explored the impact of combining a support vector classifier (SVC) with a trained deep net. The images used in our experiments with the deep nets are from the State Farm Distracted Driver Detection dataset hosted on Kaggle, each of which captures the entire body of a driver. The best results were obtained with the NASNet trained using triplet loss and combined with an SVC. It was observed that one of the advantages of deep learning approaches are their ability to learn discriminative features from various regions of a human body simultaneously. The ability has enabled deep learning approaches to reach accuracy at human level.

    Gulf Countries’ Citizens’ Acceptance of COVID-19 Vaccines—A Machine Learning Approach

    No full text
    The COVID-19 pandemic created a global emergency in many sectors. The spread of the disease can be subdued through timely vaccination. The COVID-19 vaccination process in various countries is ongoing and is slowing down due to multiple factors. Many studies on European countries and the USA have been conducted and have highlighted the public’s concern that over-vaccination results in slowing the vaccination rate. Similarly, we analyzed a collection of data from the gulf countries’ citizens’ COVID-19 vaccine-related discourse shared on social media websites, mainly via Twitter. The people’s feedback regarding different types of vaccines needs to be considered to increase the vaccination process. In this paper, the concerns of Gulf countries’ people are highlighted to lessen the vaccine hesitancy. The proposed approach emphasizes the Gulf region-specific concerns related to COVID-19 vaccination accurately using machine learning (ML)-based methods. The collected data were filtered and tokenized to analyze the sentiments extracted using three different methods: Ratio, TextBlob, and VADER methods. The sentiment-scored data were classified into positive and negative tweeted data using a proposed LSTM method. Subsequently, to obtain more confidence in classification, the in-depth features from the proposed LSTM were extracted and given to four different ML classifiers. The ratio, TextBlob, and VADER sentiment scores were separately provided to LSTM and four machine learning classifiers. The VADER sentiment scores had the best classification results using fine-KNN and Ensemble boost with 94.01% classification accuracy. Given the improved accuracy, the proposed scheme is robust and confident in classifying and determining sentiments in Twitter discourse

    A Novel Hybrid Approach Based on Deep CNN to Detect Glaucoma Using Fundus Imaging

    No full text
    Glaucoma is one of the eye diseases stimulated by the fluid pressure that increases in the eyes, damaging the optic nerves and causing partial or complete vision loss. As Glaucoma appears in later stages and it is a slow disease, detailed screening and detection of the retinal images is required to avoid vision forfeiture. This study aims to detect glaucoma at early stages with the help of deep learning-based feature extraction. Retinal fundus images are utilized for the training and testing of our proposed model. In the first step, images are pre-processed, before the region of interest (ROI) is extracted employing segmentation. Then, features of the optic disc (OD) are extracted from the images containing optic cup (OC) utilizing the hybrid features descriptors, i.e., convolutional neural network (CNN), local binary patterns (LBP), histogram of oriented gradients (HOG), and speeded up robust features (SURF). Moreover, low-level features are extracted using HOG, whereas texture features are extracted using the LBP and SURF descriptors. Furthermore, high-level features are computed using CNN. Additionally, we have employed a feature selection and ranking technique, i.e., the MR-MR method, to select the most representative features. In the end, multi-class classifiers, i.e., support vector machine (SVM), random forest (RF), and K-nearest neighbor (KNN), are employed for the classification of fundus images as healthy or diseased. To assess the performance of the proposed system, various experiments have been performed using combinations of the aforementioned algorithms that show the proposed model based on the RF algorithm with HOG, CNN, LBP, and SURF feature descriptors, providing ≤99% accuracy on benchmark datasets and 98.8% on k-fold cross-validation for the early detection of glaucoma

    A Novel Hybrid Approach Based on Deep CNN to Detect Glaucoma Using Fundus Imaging

    No full text
    Glaucoma is one of the eye diseases stimulated by the fluid pressure that increases in the eyes, damaging the optic nerves and causing partial or complete vision loss. As Glaucoma appears in later stages and it is a slow disease, detailed screening and detection of the retinal images is required to avoid vision forfeiture. This study aims to detect glaucoma at early stages with the help of deep learning-based feature extraction. Retinal fundus images are utilized for the training and testing of our proposed model. In the first step, images are pre-processed, before the region of interest (ROI) is extracted employing segmentation. Then, features of the optic disc (OD) are extracted from the images containing optic cup (OC) utilizing the hybrid features descriptors, i.e., convolutional neural network (CNN), local binary patterns (LBP), histogram of oriented gradients (HOG), and speeded up robust features (SURF). Moreover, low-level features are extracted using HOG, whereas texture features are extracted using the LBP and SURF descriptors. Furthermore, high-level features are computed using CNN. Additionally, we have employed a feature selection and ranking technique, i.e., the MR-MR method, to select the most representative features. In the end, multi-class classifiers, i.e., support vector machine (SVM), random forest (RF), and K-nearest neighbor (KNN), are employed for the classification of fundus images as healthy or diseased. To assess the performance of the proposed system, various experiments have been performed using combinations of the aforementioned algorithms that show the proposed model based on the RF algorithm with HOG, CNN, LBP, and SURF feature descriptors, providing ≤99% accuracy on benchmark datasets and 98.8% on k-fold cross-validation for the early detection of glaucoma

    A Novel text2IMG Mechanism of Credit Card Fraud Detection: A Deep Learning Approach

    No full text
    Online sales and purchases are increasing daily, and they generally involve credit card transactions. This not only provides convenience to the end-user but also increases the frequency of online credit card fraud. In the recent years, in some countries, this fraud increase has led to an exponential increase in credit card fraud detection, which has become increasingly important to address this security issue. Recent studies have proposed machine learning (ML)-based solutions for detecting fraudulent credit card transactions, but their detection scores still need improvement due to the imbalance of classes in any given dataset. Few approaches have achieved exceptional results on different datasets. In this study, the Kaggle dataset was used to develop a deep learning (DL)-based approach to solve the text data problem. A novel text2IMG conversion technique is proposed that generates small images. The images are fed into a CNN architecture with class weights using the inverse frequency method to resolve the class imbalance issue. DL and ML approaches were applied to verify the robustness and validity of the proposed system. An accuracy of 99.87% was achieved by Coarse-KNN using deep features of the proposed CNN

    A Novel text2IMG Mechanism of Credit Card Fraud Detection: A Deep Learning Approach

    No full text
    Online sales and purchases are increasing daily, and they generally involve credit card transactions. This not only provides convenience to the end-user but also increases the frequency of online credit card fraud. In the recent years, in some countries, this fraud increase has led to an exponential increase in credit card fraud detection, which has become increasingly important to address this security issue. Recent studies have proposed machine learning (ML)-based solutions for detecting fraudulent credit card transactions, but their detection scores still need improvement due to the imbalance of classes in any given dataset. Few approaches have achieved exceptional results on different datasets. In this study, the Kaggle dataset was used to develop a deep learning (DL)-based approach to solve the text data problem. A novel text2IMG conversion technique is proposed that generates small images. The images are fed into a CNN architecture with class weights using the inverse frequency method to resolve the class imbalance issue. DL and ML approaches were applied to verify the robustness and validity of the proposed system. An accuracy of 99.87% was achieved by Coarse-KNN using deep features of the proposed CNN
    corecore